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PROBLEM FORMULATION

Consider a partial differential equation (PDE) model

Parameter space

Solution space𝒢: 𝒜 → 𝒰

Example: Poisson equation  ∇𝑢 = 𝑎. Given the functional parameter 𝑎, we compute the 
corresponding solution 𝑢.



PROBLEM FORMULATION

We go further and consider possibly stochastic PDEs

Parameter space

Solution space𝒢: 𝒜 × ℬ → 𝒰

Example: Darcy flow −∇ ∙ (𝑎(𝑥)∇𝑢(𝑥)) = 𝑓(𝑥) + 𝜉, where ξ denotes space white noise. In 
this case, 𝑢 = 𝒢ξ 𝑎 .

Unknown source of noise



PROBLEM FORMULATION

We will try to solve inverse problems

Parameter space

Solution space𝒢: 𝒜 × ℬ → 𝒰

Given noisy observations of the sPDE solution 𝑦𝑖 = 𝒢ξ 𝑎 𝒙𝑖 + 𝜂𝑖 , we want to infer 𝒂

Unknown source of noise

In our scenario, 𝜂𝑖 follows a standard Gaussian distribution. That is, 𝜂𝑖 ∼ 𝒩 0, σ2 .



PROBLEM FORMULATION

We will try to solve inverse problems

We take a Bayesian 
approach

Parameter space

Solution space𝒢: 𝒜 × ℬ → 𝒰

Given noisy observations of the sPDE solution 𝑦𝑖 = 𝒢ξ 𝑎 𝒙𝑖 + 𝜂𝑖 , we want to infer 𝒂

Unknown source of noise

In our scenario, 𝜂𝑖 follows a standard Gaussian distribution. That is, 𝜂𝑖 ∼ 𝒩 0, σ2 .



PROBLEM FORMULATION

An important challenge is sensor placement

What does this mean? Determine measurement positions 𝒙 that yield the most 

information about the solution 𝑢 and the functional parameter 𝑎. 

Recall that we measure noisy observations of the sPDE solution 𝑦𝑖 = 𝒢ξ 𝑎 𝒙𝑖 + 𝜂𝑖 at 

different points 𝒙𝑖 to infer the solution and the parameter 𝑎. We want to choose the 

sensor locations 𝒙𝑖 in an optimal way. 



OUR OBJECTIVE: learn the initial parameter 
+ optimise sensor locations

×

Infer the initial parameter

Based on measurements of 
the solution by different 
sensors   How do we choose       

to obtain the 
maximum amount 
of information?



CHALLENGES

• Possibly stochastic operator 𝒢

• Functional form parameter and solution

• Resolution invariant method

• Computationally efficient 



SOLUTION

Learn a generative model 𝒑𝜽 for the joint distribution over
parameters and PDE solutions (𝑎 , 𝑢 = 𝒢 𝑎 ).

This provides a surrogate method which allows for complex
probabilistic relationship and that is not dependent on a fixed
discretisation of the domain.



TRAINING WORKFLOW

Learn 𝑝θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

∝ exp −𝐸θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖



IMPLICIT NEURAL REPRESENTATIONS

• Shared weights among all functions in the dataset and particular weights for each function.

• Train them using an outer-inner optimisation loop to minimise the MSE.

• Very low reconstruction error.



ENERGY-BASED MODELS Learn 𝑝θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

∝ exp −𝐸θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖



ENERGY-BASED MODELS Learn 𝑝θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

∝ exp −𝐸θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

• Training method:  



INFERENCE FROM SPARSE OBSERVATIONS

Models distribution of 
latent representations

Learn 𝑝θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

∝ exp −𝐸θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖



INFERENCE FROM SPARSE OBSERVATIONS

Models distribution of 
latent representations

Learn 𝑝θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

∝ exp −𝐸θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

It also provides a ‘’prior’’ 
distribution for our problem



INFERENCE FROM SPARSE OBSERVATIONS

Learn 𝑝θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

∝ exp −𝐸θ 𝒛𝑎𝑖
, 𝒛𝑢𝑖

𝑝 𝒛𝑎 , 𝒛𝑢|𝒟 ∝ 𝑝 𝒟|𝒛𝑎, 𝒛𝑢 𝑝θ(𝒛𝑎, 𝒛𝑢)

Allows uncertainty 
quantification

Bayes 
rule



OPTIMAL SENSOR PLACEMENT

Find optimal sparse sensor placement positions 𝜉 = {𝜉1, … , 𝜉𝐷} to improve posterior 

inference based on new measurements 𝑦𝑖 = 𝑢(𝜉𝑖) + 𝜂𝑖.

We need to define what is a good placement position, that is, an utility function.

HOW?



OPTIMAL SENSOR PLACEMENT

Find optimal sparse sensor placement positions 𝜉 = {𝜉1, … , 𝜉𝐷} to improve posterior 

inference based on new measurements 𝑦𝑖 = 𝑢(𝜉𝑖) + 𝜂𝑖.

Maximise utility of sensor placement positions

HOW?

𝑈 𝜉 : = 𝔼𝑝(𝑦|𝜉)𝐷𝐾𝐿(𝑝(𝒛𝑎, 𝒛𝑢|𝑦, 𝜉)||𝑝θ(𝒛𝑎, 𝒛𝑢))



OPTIMAL SENSOR PLACEMENT

Find optimal sparse sensor placement positions 𝜉 = {𝜉1, … , 𝜉𝐷} to improve posterior 

inference based on new measurements 𝑦𝑖 = 𝑢(𝜉𝑖) + 𝜂𝑖.

In practice, we maximise the PCE bound

where the expectation is over ς 𝑝𝜃 𝒛𝑎,𝑖 , 𝒛𝑢,𝑖 𝑝 𝑦 𝒛𝑎,0, 𝒛𝑢,0 .

The selection of 𝜉𝑖 is conducted sequentially.

HOW?

𝑈 𝜉 : = 𝔼𝑝(𝑦|𝜉)𝐷𝐾𝐿(𝑝(𝒛𝑎, 𝒛𝑢|𝑦, 𝜉)||𝑝θ(𝒛𝑎, 𝒛𝑢))

෡𝑈𝑃𝐶𝐸 𝜉 : = 𝔼 log
𝑝(𝑦|𝒛𝑎,0, 𝒛𝑢,0, 𝜉)

1
𝐿 + 1

σ𝑙=0
𝐿 𝑝(𝑦|𝒛𝑎,𝑙 , 𝒛𝑢,𝑙 , 𝜉)

≤ 𝑈(𝜉)



OPTIMAL SENSOR PLACEMENT

Find optimal sparse sensor placement positions 𝜉 = {𝜉1, … , 𝜉𝐷} to improve posterior 

inference based on new measurements 𝑦𝑖 = 𝑢(𝜉𝑖) + 𝜂𝑖.

Considering the sequence of locations {𝜉1, … , 𝜉𝑡−1} and outcomes {𝑦1, … , 𝑦𝑡−1} up to 

step 𝑡, we maximise the utility given the history ℎ𝑡−1 = 𝜉𝑘 , 𝑦𝑘 𝑘=1
𝑡−1

HOW TO DO THE 
SELECTION 

SEQUENTIALLY?

𝑈 𝜉𝑡|ℎ𝑡−1 : = 𝔼 log
𝑝(𝑦|𝒛𝑎 , 𝒛𝑢, 𝜉𝑡 , ℎ𝑡−1)

𝑝(𝑦|𝜉𝑡 , ℎ𝑡−1)



BENCHMARK ALGORITHMS

• Neural Operator Surrogate: It can only learn deterministic maps. 
Therefore, it fails to incorporate the effect that a spatio-temporal 
external random signal has on the system described.

• Neural Operator Surrogate With Noise Oracle (Ideal setting not 
realistic): Takes as the driving noise of the stochastic model



ALTERNATIVE METHODS



NUMERICAL EXAMPLES

• Our training data consists of 𝑀 pairs of parameters and their corresponding 

solutions, 𝑎𝑖 , 𝑢𝑖 𝑖=1,…,𝑀 . We assume access to only 𝑁𝑖 point observations for each 

of them, where the set of 𝑁𝑖 locations varies across the 𝑀 function realisations and 

need not be the same for 𝑎 and 𝑢.

• PDE solutions are only required to train the INR and EBM models. Once trained, 

these models are reused for inference leading to high savings in terms of 

computational cost.

• For each method (ours and benchmarks) we compare optimal sensor placement 

against a quasi-Monte Carlo sequence

QMC Uniform



NUMERICAL EXPERIMENTS

Boundary value problem in 1D: 𝑢′′ 𝑥 − 𝑢2 𝑥 𝑢′ 𝑥 = 𝑓(𝑥)

Boundary conditions 𝑢 −1 = 𝑋𝑎 ∼ 𝑁 𝑎, 0.32 , 𝑢 1 = 𝑋𝑏 ∼ 𝑈𝑛𝑖𝑓 𝑏 − 0.3, 𝑏 + 0.4

Training data: 𝑎, 𝑏 and observations of solution for a realisation of 𝑋𝑎, 𝑋𝑏

Perform inference on 𝑎, 𝑏 based on 2 sparse observations of solution  



NUMERICAL EXPERIMENTS

Boundary value problem in 1D:

Sobol points

Batch non-adaptive



NUMERICAL EXPERIMENTS

Steady-state diffusion in 2D:
Learn functional diffusion coefficient 𝜅 generated as the push-forward 
of a Gaussian random field. 𝑓 𝑥 = 0.5 and 𝜔 is space white noise  

Based on 5 initial observations , find optimal locations for 15
additional measurement sites

−∇ ⋅ 𝜅 𝑥 ∇𝑢 𝑥 = 𝑓 𝑥 + 𝛼𝜔



NUMERICAL EXPERIMENTS

Steady-state diffusion in 2D:

Solutions Diffusion coefficient



NUMERICAL EXPERIMENTS

Navier Stokes equation: 𝜕𝑡𝜔 𝑥, 𝑡 + 𝑢 𝑥, 𝑡 ⋅ ∇𝜔 𝑥, 𝑡 = 𝜈Δ𝜔 𝑥, 𝑡 + 𝑓 𝑥 + 𝛼𝜀

Learn initial vorticity 𝜔0 𝑥 = 𝜔(𝑥, 0) generated according to a Gaussian 
random field with periodic boundary conditions. 𝑓 𝑥 is the deterministic 
forcing function and 𝜀 is the stochastic forcing function

We learn a Functional Neural Coupling between the initial vorticity 𝜔0

and the vorticity at times 𝑡 = 1, 2, 3.
Find optimal locations for 15 measurements sites of the vorticity based
on 5 initial observations.



NUMERICAL EXPERIMENTS

Navier Stokes equation:



NUMERICAL EXPERIMENTS

Navier Stokes equation:



LIMITATIONS

Limitations:

▪ Assumption that the density of the parameter-solution pairs is positive everywhere might 

be restrictive. For example, only a few parameter choices lead to stable behaviour of the 

system. 

▪ EBM will not necessarily generalise to parts of the space not covered by the prior from 

which 𝑎 was sampled. Therefore, we need to carefully choose training data.

Future work:

▪ Study sequential strategies that use the observation data more effectively for fine-tuning 

the base EBM. Generating more data as needed.



MORE FUTURE WORK

If we have different sensors and some of them 
provide better measurements than others, how 
do we place them?

What if we have to select not a set of sensor 
points      but the route that a submarine follows 
to take measurements?  



CONCLUSIONS

Our combination of implicit neural representation (INR) and

generative model captures the often-intractable stochasticity

that is propagated through the PDE and provides a novel

method for sensor placement in inverse PDE problems avoiding

costly MCMC methods with runtimes of days vs minutes for our

approach.
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