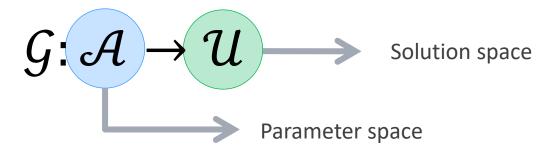
Deep Optimal Sensor Placement for Black Box Stochastic Simulations

University of Glasgow 28/05/2025

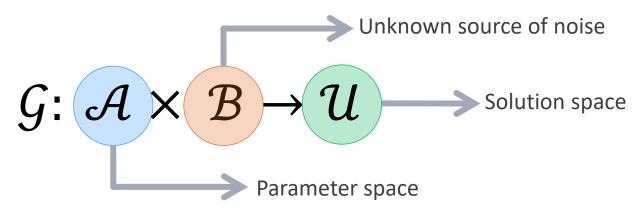
Paula Cordero Encinar, Tobias Schroder, Peter Yatsyshin and Andrew Duncan

Consider a partial differential equation (PDE) model



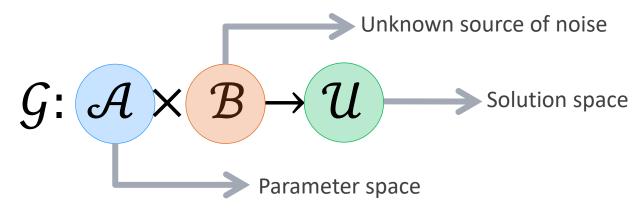
Example: Poisson equation $\nabla u = a$. Given the functional parameter a, we compute the corresponding solution u.

We go further and consider possibly stochastic PDEs



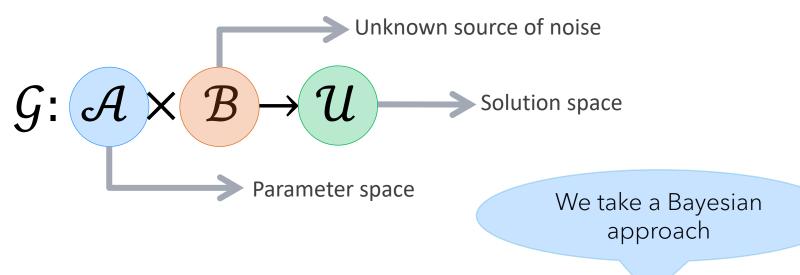
Example: Darcy flow $-\nabla \cdot (a(x)\nabla u(x)) = f(x) + \xi$, where ξ denotes space white noise. In this case, $u = \mathcal{G}_{\xi}(a)$.

We will try to solve inverse problems



Given noisy observations of the sPDE solution $y_i = \mathcal{G}_{\xi}(a)(x_i) + \eta_i$, we want to infer a In our scenario, η_i follows a standard Gaussian distribution. That is, $\eta_i \sim \mathcal{N}(0, \sigma^2)$.

We will try to solve inverse problems



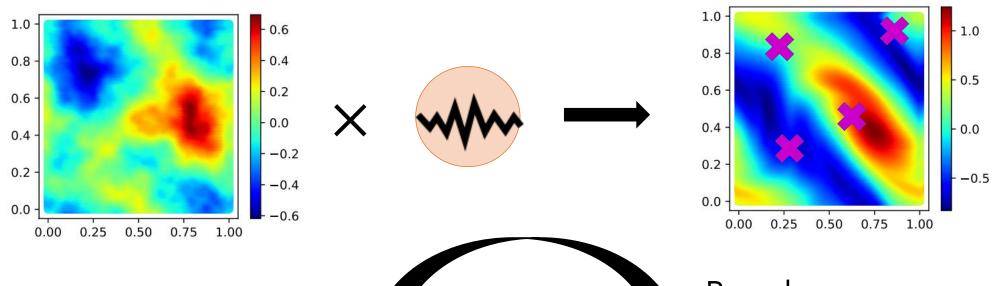
Given noisy observations of the sPDE solution $y_i = \mathcal{G}_{\xi}(a)(x_i) + \eta_i$, we want to infer a In our scenario, η_i follows a standard Gaussian distribution. That is, $\eta_i \sim \mathcal{N}(0, \sigma^2)$.

An important challenge is sensor placement

What does this mean? Determine measurement positions x that yield the most information about the solution u and the functional parameter a.

Recall that we measure noisy observations of the sPDE solution $y_i = \mathcal{G}_{\xi}(a)(x_i) + \eta_i$ at different points x_i to infer the solution and the parameter a. We want to choose the sensor locations x_i in an optimal way.

OUR OBJECTIVE: learn the initial parameter + optimise sensor locations



Infer the initial parameter

How do we choose to obtain the maximum amount of information?

Based on measurements of the solution by different sensors

CHALLENGES

ullet Possibly stochastic operator ${\cal G}$

• Functional form parameter and solution

Resolution invariant method

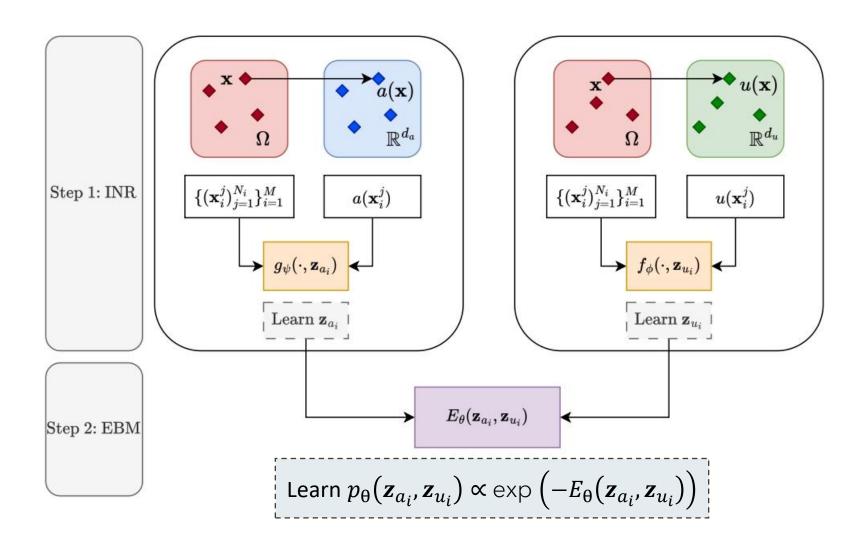
Computationally efficient

SOLUTION

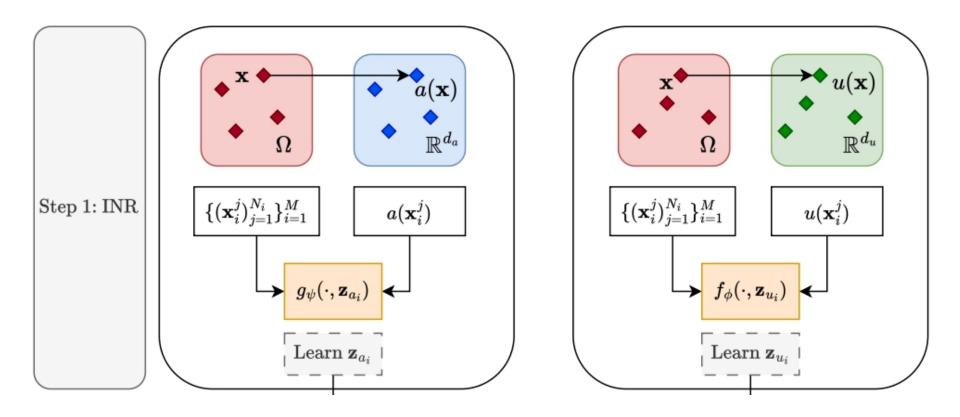
Learn a **generative model** p_{θ} for the joint distribution over parameters and PDE solutions $(a, u = \mathcal{G}(a))$.

This provides a **surrogate method** which allows for complex probabilistic relationship and that is **not dependent on a fixed discretisation** of the domain.

TRAINING WORKFLOW



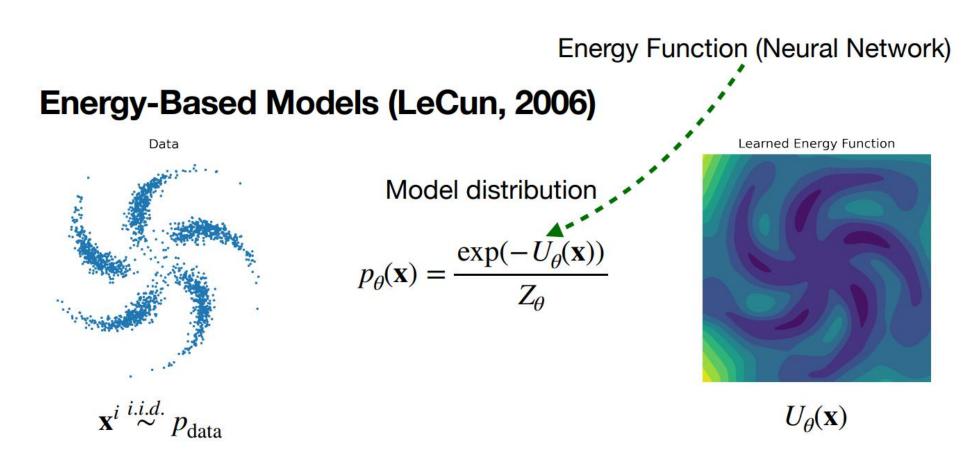
IMPLICIT NEURAL REPRESENTATIONS



- Shared weights among all functions in the dataset and particular weights for each function.
- Train them using an outer-inner optimisation loop to minimise the MSE.
- Very low reconstruction error.

ENERGY-BASED MODELS

Learn
$$p_{\theta}(\mathbf{z}_{a_i}, \mathbf{z}_{u_i}) \propto \exp\left(-E_{\theta}(\mathbf{z}_{a_i}, \mathbf{z}_{u_i})\right)$$



Intractable normalisation (partition function): $Z_{\theta} = \left| \exp(-U_{\theta}(\mathbf{x})) d\mathbf{x} \right|$

ENERGY-BASED MODELS

Learn
$$p_{\theta}(\mathbf{z}_{a_i}, \mathbf{z}_{u_i}) \propto \exp\left(-E_{\theta}(\mathbf{z}_{a_i}, \mathbf{z}_{u_i})\right)$$

• Training method:

Energy Discrepancy

Energy-Based distribution: $p(\mathbf{x}) \propto \exp(-U(\mathbf{x}))$

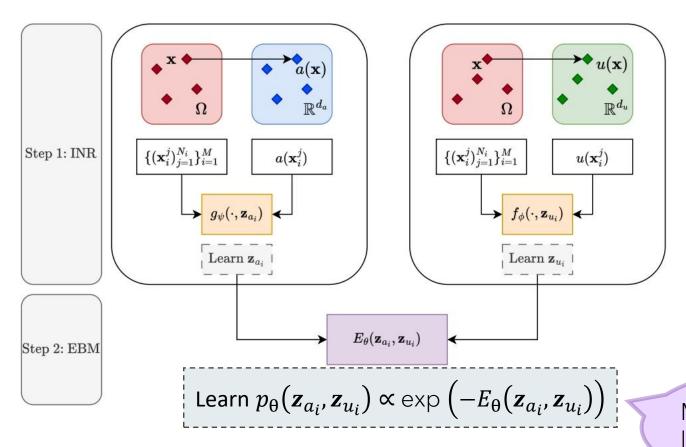
Conditional (noising) distribution: $q(\mathbf{y} \mid \mathbf{x})$

Contrastive potential: $U_q(\mathbf{y}) = -\log \int \exp(-U(\mathbf{x})) q(\mathbf{y} \mid \mathbf{x}) d\mathbf{x}$

$$\mathrm{ED}_q(p_{\mathrm{data}},p) := \mathbb{E}_{p_{\mathrm{data}}(\mathbf{x})}[U(\mathbf{x})] - \mathbb{E}_{p_{\mathrm{data}}(\mathbf{x})}\mathbb{E}_{q(\mathbf{y}|\mathbf{x})}[U(\mathbf{y})]$$

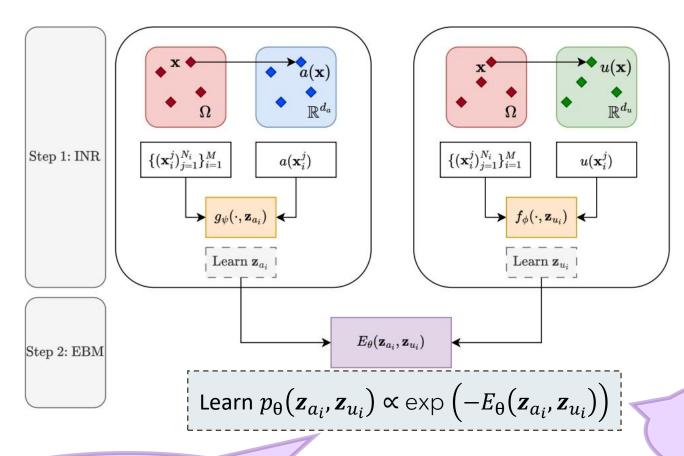
- Data processing inequality implies that $\mathrm{ED}_q(p_{data},p)\geq 0.$
- ullet Energy Discrepancy is functionally convex in U.
- For nice q , ED has a unique global minimiser at $\exp(-\,U^*) \propto p_{\rm data}$

INFERENCE FROM SPARSE OBSERVATIONS



Models distribution of latent representations

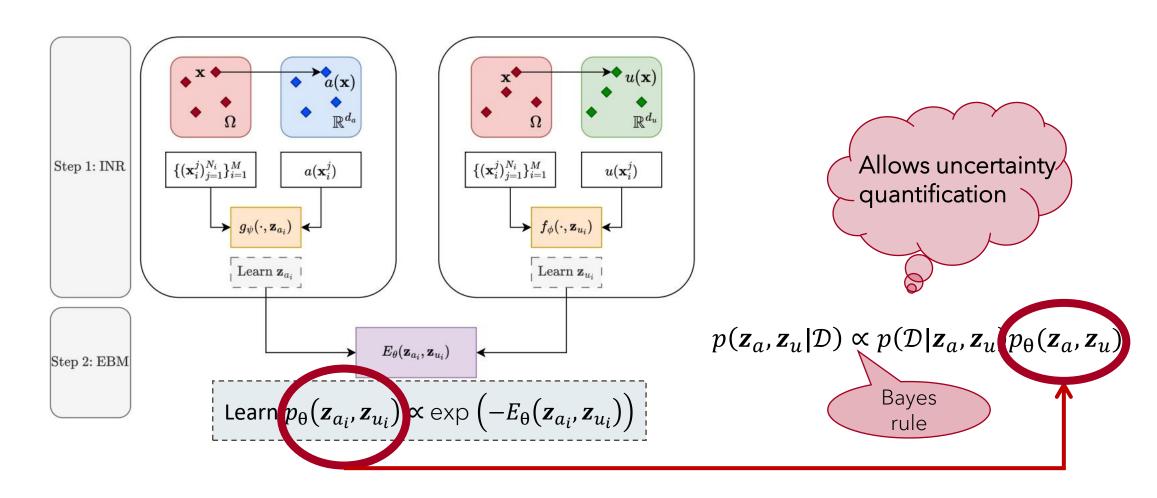
INFERENCE FROM SPARSE OBSERVATIONS



Models distribution of latent representations

It also provides a "prior" distribution for our problem

INFERENCE FROM SPARSE OBSERVATIONS



Find optimal sparse sensor placement positions $\xi = \{\xi_1, ..., \xi_D\}$ to improve posterior inference based on new measurements $y_i = u(\xi_i) + \eta_i$.

We need to define what is a good placement position, that is, an utility function.

Find optimal sparse sensor placement positions $\xi = \{\xi_1, ..., \xi_D\}$ to improve posterior inference based on new measurements $y_i = u(\xi_i) + \eta_i$.

Maximise utility of sensor placement positions

$$U(\xi) := \mathbb{E}_{p(y|\xi)} D_{KL}(p(\mathbf{z}_a, \mathbf{z}_u|y, \xi) || p_{\theta}(\mathbf{z}_a, \mathbf{z}_u))$$

Find optimal sparse sensor placement positions $\xi = \{\xi_1, ..., \xi_D\}$ to improve posterior inference based on new measurements $y_i = u(\xi_i) + \eta_i$.

HOW?

$$U(\xi) := \mathbb{E}_{p(y|\xi)} D_{KL}(p(\mathbf{z}_a, \mathbf{z}_u|y, \xi) || p_{\theta}(\mathbf{z}_a, \mathbf{z}_u))$$

In practice, we maximise the PCE bound

$$\widehat{U}_{PCE}(\xi) := \mathbb{E}\left[\log \frac{p(y|\mathbf{z}_{a,0}, \mathbf{z}_{u,0}, \xi)}{\frac{1}{L+1} \sum_{l=0}^{L} p(y|\mathbf{z}_{a,l}, \mathbf{z}_{u,l}, \xi)}\right] \leq U(\xi)$$

where the expectation is over $\prod p_{\theta}(\mathbf{z}_{a,i}, \mathbf{z}_{u,i}) p(y|\mathbf{z}_{a,0}, \mathbf{z}_{u,0})$.

The selection of ξ_i is conducted sequentially.

Find optimal sparse sensor placement positions $\xi = \{\xi_1, ..., \xi_D\}$ to improve posterior inference based on new measurements $y_i = u(\xi_i) + \eta_i$.

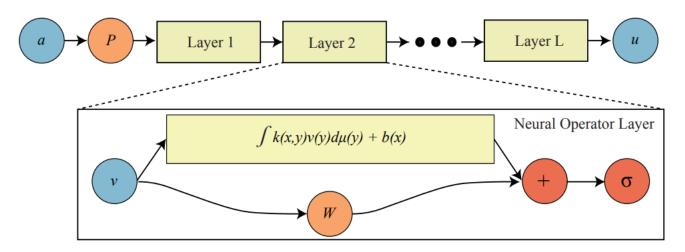
HOW TO DO THE SELECTION SEQUENTIALLY?

Considering the sequence of locations $\{\xi_1, ..., \xi_{t-1}\}$ and outcomes $\{y_1, ..., y_{t-1}\}$ up to step t, we maximise the utility given the history h_{t-1}

$$U(\xi_t|h_{t-1}) := \mathbb{E}\left[\log \frac{p(y|\mathbf{z}_a, \mathbf{z}_u, \xi_t, h_{t-1})}{p(y|\xi_t, h_{t-1})}\right]$$

BENCHMARK ALGORITHMS

• Neural Operator Surrogate: It can only learn deterministic maps. Therefore, it fails to incorporate the effect that a spatio-temporal external random signal has on the system described.



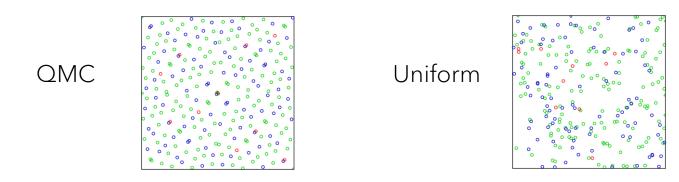
• Neural Operator Surrogate With Noise Oracle (Ideal setting not realistic): Takes as the driving noise of the stochastic model

ALTERNATIVE METHODS

Methods	Direct PDE solves	Neural Operator surrogate	Neural Operator surrogate with oracle noise	Functional Neural Coupling (ours)
Low-cost evaluation				
Low-cost inversion	×			
Supports sensor placement pipeline				
Supports stochastic PDEs		×		
Tractable likelihood	×	×		

NUMERICAL EXAMPLES

- Our training data consists of M pairs of parameters and their corresponding solutions, $\{a_i, u_i\}_{i=1,\dots,M}$. We assume access to only N_i point observations for each of them, where the set of N_i locations varies across the M function realisations and need not be the same for a and a.
- PDE solutions are only required to train the INR and EBM models. Once trained, these models are reused for inference leading to high savings in terms of computational cost.
- For each method (ours and benchmarks) we compare optimal sensor placement against a quasi-Monte Carlo sequence



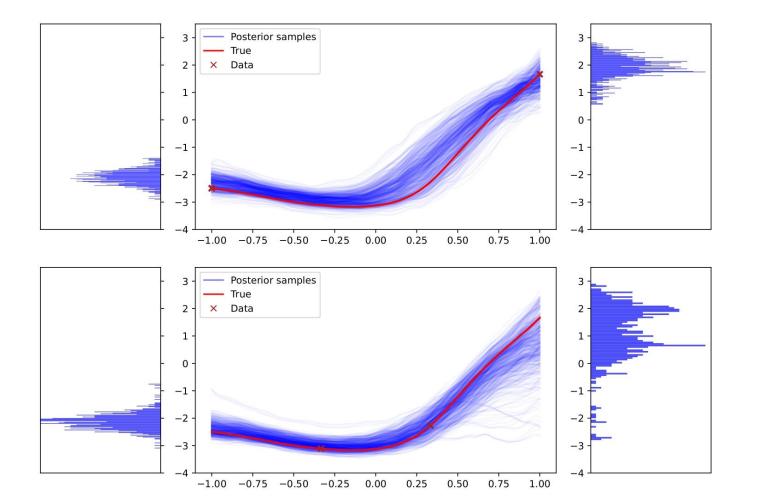
Boundary value problem in 1D: $u''(x) - u^2(x)u'(x) = f(x)$

Boundary conditions $u(-1) = X_a \sim N(a, 0.3^2), u(1) = X_b \sim Unif(b-0.3, b+0.4)$ Training data: a, b and observations of solution for a realisation of X_a, X_b

Perform inference on a, b based on 2 sparse observations of solution \bowtie

Method	Design points	$\ \widehat{u} - u_{\rm tr}\ ^2 / \ u_{\rm tr}\ ^2$	$\mathrm{MSE}(\hat{a})$	$\mathrm{MSE}(\hat{b})$
Functional Neural Coupling (Ours)	Adaptive BED Batch non-adaptive BED Random sequence	0.124 ± 0.101 0.097 ± 0.081 0.331 ± 0.259	0.135 ± 0.099 0.103 ± 0.193 0.476 ± 0.888	1.441 ± 1.003 1.074 ± 0.906 4.162 ± 3.885
FNO surrogate (Li et al., 2021)	Adaptive BED Batch non-adaptive BED Random sequence	0.137 ± 0.308 0.125 ± 0.255 0.251 ± 0.507	0.441 ± 1.337 0.428 ± 1.239 0.484 ± 0.947	1.224 ± 2.084 1.111 ± 1.785 3.839 ± 7.457
FNO w/ oracle noise surrogate (Salvi et al., 2022)	Adaptive BED Batch non-adaptive BED Random sequence	$\begin{array}{c} 0.116 \pm 0.250 \\ \underline{0.090 \pm 0.131} \\ 0.356 \pm 0.613 \end{array}$	$\begin{array}{c} 0.021 \pm 0.058 \\ \hline 0.041 \pm 0.105 \\ 0.494 \pm 1.412 \end{array}$	1.580 ± 2.888 1.046 ± 1.620 8.372 ± 11.856

Boundary value problem in 1D:



Batch non-adaptive

Sobol points

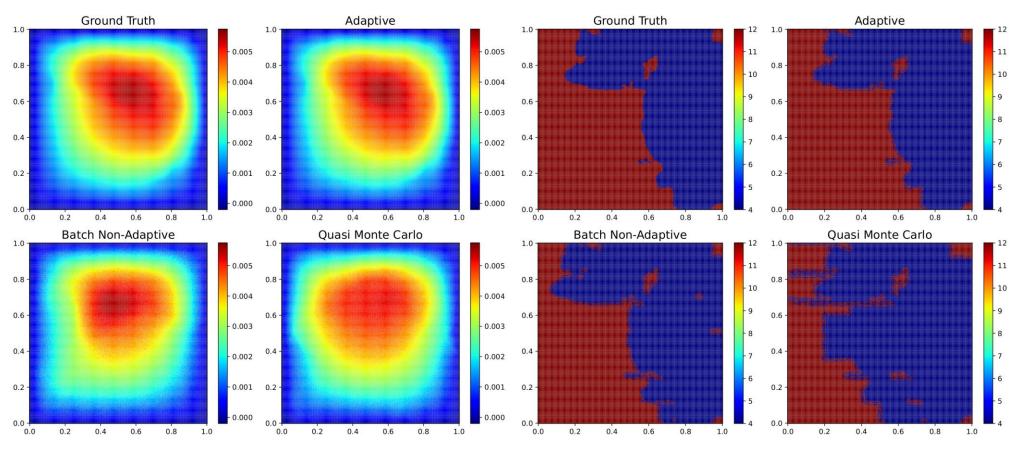
Steady-state diffusion in 2D: $-\nabla \cdot (\kappa(x)\nabla u(x)) = f(x) + \alpha \omega$

Learn functional diffusion coefficient κ generated as the push-forward of a Gaussian random field. f(x) = 0.5 and ω is space white noise

Based on 5 initial observations **★** , find optimal locations **★** for 15 additional measurement sites

Method	Design points	$\ \log \widehat{\kappa} - \log \kappa_{\mathrm{tr}}\ ^2 / \ \log \kappa_{\mathrm{tr}}\ ^2$	$\ \widehat{u} - u_{\mathrm{tr}}\ ^2 / \ u_{\mathrm{tr}}\ ^2$
Functional Neural Coupling (Ours)	Adaptive BED Batch non-adaptive BED Quasi-Monte Carlo sequence	$egin{array}{c} 0.234 \pm 0.078 \\ 0.337 \pm 0.091 \\ 0.711 \end{array}$	0.102 ± 0.083 0.192 ± 0.087 0.328
FNO surrogate (Li et al., 2021)	Adaptive BED Batch non-adaptive BED Quasi-Monte Carlo sequence	0.306 ± 0.130 0.551 ± 0.172 1.182	0.117 ± 0.106 0.220 ± 0.118 0.379
FNO w/ oracle noise surrogate (Salvi et al., 2022)	Adaptive BED Batch non-adaptive BED Quasi-Monte Carlo sequence	$\begin{array}{c} 0.155 \pm 0.101 \\ \hline 0.291 \pm 0.089 \\ 0.459 \end{array}$	$0.093 \pm 0.089 \\ \hline 0.124 \pm 0.110 \\ 0.255$

Steady-state diffusion in 2D:



Navier Stokes equation: $\partial_t \omega(x,t) + u(x,t) \cdot \nabla \omega(x,t) = \nu \Delta \omega(x,t) + f(x) + \alpha \varepsilon$

Learn initial vorticity $\omega_0(x) = \omega(x,0)$ generated according to a Gaussian random field with periodic boundary conditions. f(x) is the deterministic forcing function and ε is the stochastic forcing function

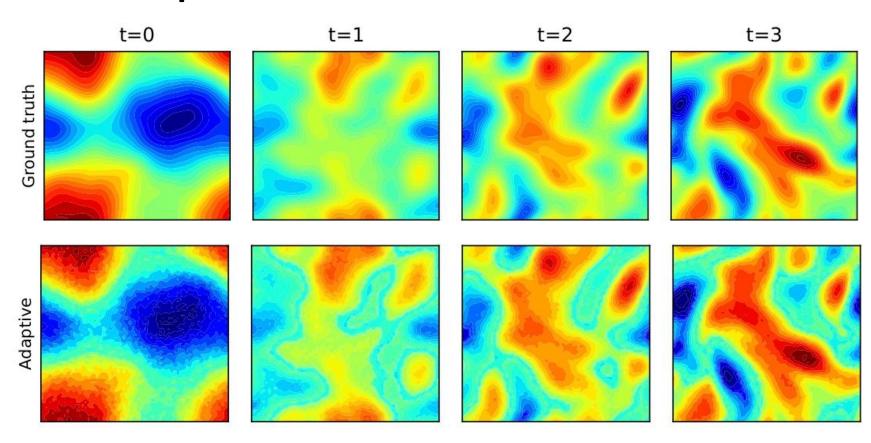
We learn a Functional Neural Coupling between the initial vorticity ω_0 and the vorticity at times t=1,2,3.

Find optimal locations for 15 measurements sites of the vorticity based on 5 initial observations.

Navier Stokes equation:

Method	Design points	$\ \widehat{w}_0 - w_{\mathrm{tr},0}\ ^2 / \ w_{\mathrm{tr},0}\ ^2$	$\ \underline{\widehat{w}}_t - \underline{w}_{\mathrm{tr},t}\ ^2 / \ \underline{w}_{\mathrm{tr},t}\ ^2$
Functional Neural Coupling (Ours)	Adaptive BED Batch non-adaptive BED Quasi-Monte Carlo sequence	$egin{array}{c} 0.293 \pm 0.077 \\ 0.321 \pm 0.083 \\ 0.578 \end{array}$	$egin{array}{c} 0.175 \pm 0.091 \\ 0.239 \pm 0.090 \\ 0.422 \end{array}$
FNO surrogate (Li et al., 2021)	Adaptive BED Batch non-adaptive BED Quasi-Monte Carlo sequence	0.382 ± 0.067 0.454 ± 0.092 0.652	0.242 ± 0.095 0.288 ± 0.089 0.576
FNO w/ oracle noise surrogate (Salvi et al., 2022)	Adaptive BED Batch non-adaptive BED Quasi-Monte Carlo sequence	$\begin{array}{c} \underline{0.221 \pm 0.065} \\ 0.301 \pm 0.080 \\ 0.454 \end{array}$	$0.103 \pm 0.079 \\ \hline 0.169 \pm 0.083 \\ 0.332$

Navier Stokes equation:



LIMITATIONS

Limitations:

- Assumption that the density of the parameter-solution pairs is positive everywhere might be restrictive. For example, only a few parameter choices lead to stable behaviour of the system.
- EBM will not necessarily generalise to parts of the space not covered by the prior from which a was sampled. Therefore, we need to carefully choose training data.

Future work:

 Study sequential strategies that use the observation data more effectively for fine-tuning the base EBM. Generating more data as needed.

MORE FUTURE WORK

?

If we have different sensors and some of them provide better measurements than others, how do we place them?

What if we have to select not a set of sensor points ** but the route that a submarine follows to take measurements?

CONCLUSIONS

Our combination of implicit neural representation (INR) and generative model captures the often-intractable stochasticity that is propagated through the PDE and provides a **novel method for sensor placement in inverse PDE problems avoiding costly MCMC methods** with runtimes of days vs minutes for our approach.