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Introduction: Generative Models

The goal of generative modelling is to learn the underlying probability dis-
tribution myata given a set of samples.

In particular, diffusion models achieve this as follows:

Forward SDE (data — noise)

i
score function

dx = [f(x’ t) — 92 (t)Vx logp: (x)| dt + g(2 @
Reverse SDE (noise — data)

e

3/21



Introduction: Diffusion Models

@ The forward process in diffusion models is typically an
Ornstein-Uhlenbeck process:

dX; = —Xedt +V2dB;, for 0<t<T.
where (Bt).c[o, 7] is @ Brownian motion on R and Xo ~ Tdata-

I Disclaimer: The OU process takes 0o time to interpolate between
Tdata and a Gaussian.



Introduction: Diffusion Models

@ At generation time, these models evolve samples along a path of
probability distributions (pit).epo,77- The intermediate random
variables X; ~ u; are defined as

Xt = \/5(;)< +v1-AZ,

for t € [0, T], where X ~ Trgata, Z ~ N(0, 1) is independent of X and
a schedule A = min{1, e=2(T—-1)}

Remark: p; is given by a convolution.

Note: We reverse the notation wrt diffusion models: 7 = Tgata (ours) vs
HO0 = Tdata
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Introduction: Diffusion vs Geometric Path

Motivation: Let Tgaea = (1 — e"™ /DN (m, 1) + e=™ /4, where up, is
the smoothed uniform distribution on I, = [-m,2m] for m = 10 (Chehab

et al. (2024)) and v = N(0,1).
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Figure 1: Geometric path
pue(x) = Tgara™ ()01 (x)

0.0

Figure 2: Gaussian Diffusion path

Tdata ~ v(x/v/1=X
pe(x) = = tA(;Cf) * El_)\t)d/zr)
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Introduction: Diffusion vs Geometric Path

What was the previous figure trying to show?

Proposition

If T4ata has a finite log-Sobolev constant Cis(7data), respectively Poincaré
constant Cpy(7data), the Gaussian diffusion path (ut).ejo, 77 satisfies for all
telo,T]

Cusi(pt) < AeCisi(mdata) + (1 — ) Csi(v),
Cri(1t) < AeCpi(Tdata) + (1 — At) Cpi(v),

respectively, where Cis)(v) = Cpi(v) = o2

v

Unlike geometric annealing (Chehab et al. (2024)), the log-Sobolev and
Poincaré constants remain uniformly bounded along the entire path by the
worst constant.
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Introduction: Diffusion Models as Interpolations

@ Intuition: It all boils down to finding a path of probability distributions
between a simple base distribution v and 7qata.

@ The interpolation perspective of diffusion models has been investigated
by Albergo et al. (2023).

@ One-sided stochastic interpolants exactly interpolate between v and
Tdata DY using an appropriate schedule A; and introducing control terms
(learned as a neural network).
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Introduction: Our Approach

@ Practical approach to general linear interpolation paths between a
simple distribution v and mgata,

= VA X + AeZ,

where X ~ Trgata, Z ~ v independent of X and A\; € [0,1], A7 = 1.

@ Explore the behaviour of Langevin dynamics driven by the gradi-
ents of log u; for t € [0, T], where u; are the intermediate distribu-
tions, i.e., X¢ ~ pt.
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Background: Diffusion Paths

Reverse process in diffusion models = sampling along a path of prob-
ability distributions (11¢):c[o, 7]

_ maaa(x/VA) v (VIR

*

lu’l'(X) )\td/2 (1 _ )\t)d/2 }

where * denotes the convolution operation, v describes the base or noising
distribution, and A; is an increasing function called schedule, such that,
At € [0,1] and A = 1.

By selecting an appropriate schedule which satisfies A\g = 0 and At = 1, the
path of probability distributions (11¢)¢c[o, 7] can interpolate exactly between
o = v and Ut = Tyata in finite time.
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Annealed Langevin Dynamics for Diffusion Paths

@ For general diffusion paths, the “reverse process” cannot be described
by a closed form SDE.

@ Instead of introducing intractable control terms, we focus on annealed
Langevin dynamics to sample from the path.

dX; = Vlog fie(X¢)dt +V2dB; t € [0, T/x],

where Xo ~ po = v, (Bt) is a Brownian motion and fir = ke, 0 < s < 1.
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Annealed Langevin Dynamics for Diffusion Paths

@ Question: How do we simulate

dX: = Vlog fis(X¢)dt +V2dB; t [0, T/k]?

@ Solution: diffusion annealed Langevin Monte Carlo (DALMC) algo-
rithm given by a simple Euler-Maruyama discretisation and the use of
a score approximation function sp(x, t) (Song and Ermon (2019))

Xig1 = Xi + hysg(Xi, tr) + /2hi&,

where h; > 0 is the step size, & ~ N(0,/), I € {1,...,M} and
0=ty <--- <ty = T/kis a discretisation of the interval [0, T /k].
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Annealed Langevin Dynamics for Diffusion Paths

e Bad news :(
Even if
dX; = Vlog f:(X:)dt +V2dB; t € [0, T /]

is simulated exactly, it introduces a bias, that is, X; ¢ it
e BUT ... We quantify this bias non-asymptotically! :)
@ A key component in determining the effectiveness of the previous dy-

namics will be the action of the curve i = (j1t)¢c[o, 7] interpolating
between the base distribution and myata, denoted by A(u).

Question: What is this action exactly?
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Annealed Langevin Dynamics for Diffusion Paths

Question: What is this action exactly?

@ The action serves as a measure of the cost of transporting v to mgata
along the given path (Guo et al. (2024)).

@ The action of a curve of probability measures with finite second-order
moment (4 some regularity conditions) is defined as follows

.
o - Wo(perss i)
Alp) "/0 e

@ Action in action: The KL divergence between the path measure of
the diffusion annealed Langevin dynamics, PpaLp = (pt,DALD)tE[O,T/n]r
and that of a reference SDE such that the marginals at each time have
distribution fiz, P = (fit)te[o,7/4], can be bounded in terms of the
action.
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A(p)ction in Action

Theorem

Let Pparp = (pt,0ALD)tc[0,T/x] be the path measure of the diffusion an-

nealed Langevin dynamics and P = (ﬁt)te[o,T/n] that of a reference SDE
such that X¢ ~ fit. If po.paLp = po,

KL(PIPoaLD) = 5A(k):

By the data processing inequality, we have that
K
KL (data [1P7/s,0aLD) < KL (P [|PpaLp) < Z-A(H)o

Choosing k= O(g?/A(w)), we ensure KL (Tdata |]pT/,€7DA|_D) <e?
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Initial Assumptions Before the Deep Dive

A1l (L? accurate score estimator)

The score approximation function sy(x, t) satisfies

M-1
Z hiEp, [HV log /,l/(Xt/) - 59(Xt/> t/)“2 < 5§core'
1=0

where 0 =ty < t1 < --- < tyy = T /k is a discretisation of the interval
[0, T/x].

A2 (Finite second-order moment of 7y,t,)

The data distribution T4+, has a finite second-order moment, that is,
M2 = Eﬂ—data[”XH2] < Q.
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Gaussian Diffusion Paths

Building blocks for the analysis

@ Smoothness of (1¢)¢.

Assumption

For all t € [0, T], the scores of the intermediate distributions V log j1:(x)
are Lipschitz with finite constant L;.

e Bound on the action of (u¢);.
It arises naturally under some weak assumption on the schedule.
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Gaussian Diffusion Paths

Smoothness of (1¢).

Alert: The previous assumption is hard to check in general. The following
assumption implies smoothness of (1st):.

Assumption: Strong convexity outside of a ball
The data distribution 7gaa has density Tgae, o< e~ Vr.
@ V. has Lipschitz continuous gradients, with Lipschitz constant L.

@ V. is strongly convex outside of a ball of radius r with convexity parameter
M. > 0, that is,

inf V2V, = M.I, inf V2V, = —L,l.

T
lIx|1=r lIxll<r

Vacher et al. (2025) obtain alternative bounds on the Lipschitz constant L.
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Gaussian Diffusion Paths

Action of (/th)t'
Assumption. (Schedule)

Let \; : RT™ — [0, 1] be non-decreasing in t and weakly differentiable, such that
there exists a constant C) satisfying either of the following conditions

atAt

max |Olog A\¢| < C or _
T 0log A < G NEEDW

< G

max
tel0,T]

1.0 1 —— Cosine-like
—— Tanh-like
—— Sigmoid-like
0.8{ — Exponential-like
Sigmoid-like

—— Custom Cosine-like

0.6

0.4
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Gaussian Diffusion Paths

Action of ().

Assumption. (Schedule)

Let \; : RT™ — [0, 1] be non-decreasing in t and weakly differentiable, such that
there exists a constant C) satisfying either of the following conditions

atAt

—— | < G,
Ae(1—Ap)

ax |Oilog A\¢| < C or max
gfo,ﬂl tlog Ae| < s te[0,7]

Lemma. (Action bound)

If T4ata has bounded second-order moment and \; satisfies the assumption above,
the action is upper bounded by

Ax(1) S Cx (Erg, [IXI] +d) S M2V d.
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Gaussian Diffusion Paths

Theorem

For any ¢ = O(Escore), and under smoothness of (u¢)¢, finite second-order
moment of 7q.ta and assumption on the schedule, the Gaussian DALMC
algorithm initialised at Xg ~ [ig requires at most

M 22
10 <d( 2\/;!) max)
g

steps to approximate 7gata to within €2 KL divergence, that is,

KL(Tdata [|Go.n7) < €2,

assuming a sufficiently accurate score estimator.
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Heavy-Tailed Diffusion Paths

We now take the base distribution to be a Student’s t-distribution, v ~
t(0,021, ), with tail index o > 2

V(X)O(< |(|M”2) (a+d)/2

Bad news: The t-distribution is not a stable distribution, unlike the Gaus-
sian family, meaning that the convolution of two t-distributions is not nec-
essarily a t-distribution.
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Heavy-Tailed Diffusion Paths

Building blocks for the analysis

@ Smoothness of (1¢)¢.

Assumption

For all t € [0, T], the scores of the intermediate distributions V log j1:(x)
are Lipschitz with finite constant L;.

e Bound on the action of (u¢);.
It arises naturally under some weak assumption on the schedule.
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Heavy-Tailed Diffusion Paths

Smoothness of (1¢)¢.
The following assumptions is simpler and imply smoothness of (1t):.

Assumption

The data distribution my,ta has density with respect to the Lebesgue measure.
@ V log myata is Lipschitz continuous with constant L,

@ ||Vlog Tyata [|> < Gy almost surely.

This assumption holds when the data distribution 75t can be expressed as
the convolution of a compactly supported measure and a t-distribution.
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Heavy-Tailed Diffusion Paths

Action of ().

Assumption. (Schedule)
Let \; : R™ — [0, 1] be non-decreasing in t and weakly differentiable, such that
there exists a constant C) satisfying

6tAt
M@ —X)|

max
tel0,T]

Lemma. (Action bound)
If Tgata has bounded second-order moment and A; satisfies the assumption above,
the action is upper bounded by

Came o?da
2500 € B (Bave [+ 225).

2
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Heavy-Tailed Diffusion Paths

Theorem

Let v ~ t(0, 0%/, a) with a > 2. For any &€ = O(&score), and under smooth-
ness of (u¢)t, finite second-order moment of myata and assumption on the
schedule, the heavy-tailed DALMC algorithm initialised at Xy ~ [ig requires

at most iy d2L2
V
O( ( 2 6) max)
&

steps to approximate mgata to within €2 KL divergence, that is,

KL(Tdata [|Go.nr) < €2,

assuming a sufficiently accurate score estimator.

Remark: same upper bound for the complexity as in the Gaussian case
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Some Final Remarks

Take home messages:

@ We have obtained non-asymptotic guarantees in KL divergence for
the DALMC algorithm when the base distribution is either Gaussian
or Student’s t.

@ In our paper, we also obtain bounds when replacing the assumption
on the smoothness of (u¢): with a weaker assumption
8 2
IE7'l'data vaﬂ' (X)” S KTI"

Some future directions:

@ Developing more efficient numerical schemes, reducing dimensional
dependencies in error bounds, and applying this framework to other
generative models.
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