Non-asymptotic Analysis of Diffusion Annealed Langevin Monte Carlo for Generative Modelling

Paula Cordero Encinar, Deniz Akyildiz and Andrew Duncan

Imperial College London

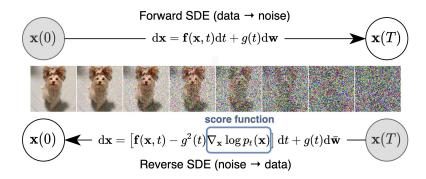
2nd RSS/Turing Workshop on Gradient Flows for Sampling, Inference, and Learning 24/03/2025

- 1 Introduction and Motivation
- Background: Generative Modelling via Diffusion Paths
 - Diffusion Paths
 - Annealed Langevin Dynamics for Diffusion Paths
- Gaussian Diffusion Paths
- 4 Heavy-Tailed Diffusion Paths
- **5** Some Final Remarks

Introduction: Generative Models

The **goal** of generative modelling is to learn the underlying probability distribution π_{data} given a set of samples.

In particular, diffusion models achieve this as follows:



Introduction: Diffusion Models

 The forward process in diffusion models is typically an Ornstein-Uhlenbeck process:

$$\mathrm{d}X_t = -X_t\mathrm{d}t + \sqrt{2}\mathrm{d}B_t, \quad \text{for } 0 \le t \le T.$$

where $(B_t)_{t\in[0,T]}$ is a Brownian motion on \mathbb{R}^d and $X_0 \sim \pi_{\mathsf{data}}$.

! Disclaimer: The OU process takes ∞ time to interpolate between $\pi_{\rm data}$ and a Gaussian.

Introduction: Diffusion Models

• At generation time, these models evolve samples along a path of probability distributions $(\mu_t)_{t\in[0,T]}$. The intermediate random variables $X_t\sim \mu_t$ are defined as

$$X_t = \sqrt{\lambda_t}X + \sqrt{1 - \lambda_t}Z,$$

for $t \in [0, T]$, where $X \sim \pi_{\text{data}}$, $Z \sim \mathcal{N}(0, I)$ is independent of X and a schedule $\lambda_t = \min\{1, e^{-2(T-t)}\}$.

Remark: μ_t is given by a convolution.

Note: We reverse the notation wrt diffusion models: $\mu_T=\pi_{\rm data}$ (ours) vs $\mu_0=\pi_{\rm data}$

Introduction: Diffusion vs Geometric Path

Motivation: Let $\pi_{\text{data}} = (1 - e^{-m^2/4})\mathcal{N}(m,1) + e^{-m^2/4}u_m$, where u_m is the smoothed uniform distribution on $I_m = [-m, 2m]$ for m = 10 (Chehab et al. (2024)) and $\nu = \mathcal{N}(0,1)$.

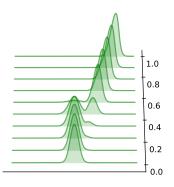


Figure 1: Geometric path $\mu_t(x) = \pi_{\mathsf{data}}^{\lambda_t}(x) \nu^{1-\lambda_t}(x)$

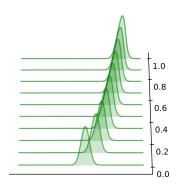


Figure 2: Gaussian Diffusion path $\mu_t(x) = \frac{\pi_{\text{data}}(x/\sqrt{\lambda_t})}{\lambda_t^{d/2}} * \frac{\nu(x/\sqrt{1-\lambda_t})}{(1-\lambda_t)^{d/2}}$

Introduction: Diffusion vs Geometric Path

What was the previous figure trying to show?

Proposition

If π_{data} has a finite log-Sobolev constant $C_{\text{LSI}}(\pi_{\text{data}})$, respectively Poincaré constant $C_{\text{PI}}(\pi_{\text{data}})$, the Gaussian diffusion path $(\mu_t)_{t \in [0,T]}$ satisfies for all $t \in [0,T]$

$$\begin{split} &C_{\mathsf{LSI}}(\mu_t) \leq \lambda_t C_{\mathsf{LSI}}(\pi_{\mathsf{data}}) + (1 - \lambda_t) C_{\mathsf{LSI}}(\nu), \\ &C_{\mathsf{PI}}(\mu_t) \leq \lambda_t C_{\mathsf{PI}}(\pi_{\mathsf{data}}) + (1 - \lambda_t) C_{\mathsf{PI}}(\nu), \end{split}$$

respectively, where $C_{LSI}(\nu) = C_{PI}(\nu) = \sigma^2$.

Unlike geometric annealing (Chehab et al. (2024)), the log-Sobolev and Poincaré constants remain uniformly bounded along the entire path by the worst constant.

Introduction: Diffusion Models as Interpolations

- **Intuition**: It all boils down to finding a path of probability distributions between a simple base distribution ν and π_{data} .
- The interpolation perspective of diffusion models has been investigated by Albergo et al. (2023).
- One-sided stochastic interpolants exactly interpolate between ν and π_{data} by using an appropriate schedule λ_t and introducing control terms (learned as a neural network).

Introduction: Our Approach

• Practical approach to general linear interpolation paths between a simple distribution ν and $\pi_{\rm data}$,

$$X_t = \sqrt{\lambda_t}X + \sqrt{1 - \lambda_t}Z,$$

where $X \sim \pi_{\mathsf{data}}$, $Z \sim \nu$ independent of X and $\lambda_t \in [0, 1]$, $\lambda_T = 1$.

• Explore the behaviour of Langevin dynamics driven by the gradients of $\log \mu_t$ for $t \in [0, T]$, where μ_t are the intermediate distributions, i.e., $X_t \sim \mu_t$.

Background: Diffusion Paths

Reverse process in diffusion models = sampling along a path of probability distributions $(\mu_t)_{t \in [0,T]}$

$$\mu_t(x) = \frac{\pi_{\mathsf{data}}(x/\sqrt{\lambda_t})}{{\lambda_t}^{d/2}} * \frac{\nu\left(x/\sqrt{1-\lambda_t}\right)}{(1-\lambda_t)^{d/2}},$$

where * denotes the convolution operation, ν describes the base or *noising* distribution, and λ_t is an increasing function called schedule, such that, $\lambda_t \in [0,1]$ and $\lambda_T = 1$.

By selecting an appropriate schedule which satisfies $\lambda_0=0$ and $\lambda_T=1$, the path of probability distributions $(\mu_t)_{t\in[0,T]}$ can interpolate exactly between $\mu_0=\nu$ and $\mu_T=\pi_{\rm data}$ in finite time.

- For general diffusion paths, the "reverse process" cannot be described by a closed form SDE.
- Instead of introducing intractable control terms, we focus on annealed Langevin dynamics to sample from the path.

$$dX_t = \nabla \log \hat{\mu}_t(X_t) dt + \sqrt{2} dB_t \quad t \in [0, T/\kappa],$$

where $X_0 \sim \mu_0 = \nu$, (B_t) is a Brownian motion and $\hat{\mu}_t = \mu_{\kappa t}$, $0 < \kappa < 1$.

• Question: How do we simulate

$$\mathrm{d}X_t = \nabla \log \hat{\mu}_t(X_t) \mathrm{d}t + \sqrt{2} \mathrm{d}B_t \quad t \in [0, T/\kappa]$$
?

• Solution: diffusion annealed Langevin Monte Carlo (DALMC) algorithm given by a simple Euler-Maruyama discretisation and the use of a score approximation function $s_{\theta}(x,t)$ (Song and Ermon (2019))

$$X_{l+1} = X_l + h_l s_{\theta}(X_l, t_l) + \sqrt{2h_l} \xi_l,$$

where $h_I > 0$ is the step size, $\xi_k \sim \mathcal{N}(0, I)$, $I \in \{1, ..., M\}$ and $0 = t_0 < \cdots < t_M = T/\kappa$ is a discretisation of the interval $[0, T/\kappa]$.

• Bad news :(
Even if $\mathrm{d} X_t = \nabla \log \hat{\mu}_t(X_t) \mathrm{d} t + \sqrt{2} \mathrm{d} B_t \quad t \in [0, T/\kappa]$ is simulated exactly, it introduces a bias, that is, $X_t \not\sim \hat{\mu}_t$

- BUT ... We quantify this bias non-asymptotically! :)
- A key component in determining the effectiveness of the previous dynamics will be the action of the curve $\mu=(\mu_t)_{t\in[0,T]}$ interpolating between the base distribution and π_{data} , denoted by $\mathcal{A}(\mu)$.

Question: What is this action exactly?

Question: What is this action exactly?

- The action serves as a measure of the cost of transporting ν to π_{data} along the given path (Guo et al. (2024)).
- The action of a curve of probability measures with finite second-order moment (+ some regularity conditions) is defined as follows

$$\mathcal{A}(\mu) := \int_0^T \lim_{\delta \to 0} \frac{W_2(\mu_{t+\delta}, \mu_t)}{|\delta|}.$$

• Action in action: The KL divergence between the path measure of the diffusion annealed Langevin dynamics, $\mathbb{P}_{DALD} = (p_{t,DALD})_{t \in [0,T/\kappa]}$, and that of a reference SDE such that the marginals at each time have distribution $\hat{\mu}_t$, $\mathbb{P} = (\hat{\mu}_t)_{t \in [0,T/\kappa]}$, can be bounded in terms of the action.

$\mathcal{A}(\mu)$ ction in Action

Theorem

Let $\mathbb{P}_{DALD} = (p_{t,DALD})_{t \in [0,T/\kappa]}$ be the path measure of the diffusion annealed Langevin dynamics and $\mathbb{P} = (\hat{\mu}_t)_{t \in [0,T/\kappa]}$ that of a reference SDE such that $X_t \sim \hat{\mu}_t$. If $p_{0,DALD} = p_0$,

$$\mathsf{KL}(\mathbb{P}||\mathbb{P}_{\mathsf{DALD}}) = \frac{\kappa}{4}\mathcal{A}(\mu).$$

By the data processing inequality, we have that

$$\mathsf{KL}\left(\pi_{\mathsf{data}}\ || p_{T/\kappa,\mathsf{DALD}}\right) \leq \mathsf{KL}\left(\mathbb{P}\ || \mathbb{P}_{\mathsf{DALD}}\right) \leq \frac{\kappa}{4} \mathcal{A}(\mu).$$

Choosing $\kappa = \mathcal{O}(\varepsilon^2/\mathcal{A}(\mu))$, we ensure KL $\left(\pi_{\mathsf{data}} \mid \mid p_{T/\kappa,\mathsf{DALD}}\right) \lesssim \varepsilon^2$.

Initial Assumptions Before the Deep Dive

A1 (L^2 accurate score estimator)

The score approximation function $s_{\theta}(x,t)$ satisfies

$$\sum_{l=0}^{M-1} h_l \mathbb{E}_{\hat{\mu}_t} \left[\|\nabla \log \hat{\mu}_l(X_{t_l}) - s_{\theta}(X_{t_l}, t_l)\|^2 \right] \leq \varepsilon_{score}^2.$$

where $0 = t_0 < t_1 < \cdots < t_M = T/\kappa$ is a discretisation of the interval $[0, T/\kappa]$.

A2 (Finite second-order moment of π_{data})

The data distribution π_{data} has a finite second-order moment, that is, $M_2 = \mathbb{E}_{\pi_{data}}[\|X\|^2] < \infty$.

Building blocks for the analysis

• Smoothness of $(\mu_t)_t$.

Assumption

For all $t \in [0, T]$, the scores of the intermediate distributions $\nabla \log \mu_t(x)$ are Lipschitz with finite constant L_t .

• Bound on the action of $(\mu_t)_t$. It arises naturally under some weak assumption on the schedule.

Smoothness of $(\mu_t)_t$.

Alert: The previous assumption is hard to check in general. The following assumption implies smoothness of $(\mu_t)_t$.

Assumption: Strong convexity outside of a ball

The data distribution $\pi_{\rm data}$ has density $\pi_{\rm data} \propto e^{-V_{\pi}}$.

- ullet V_{π} has Lipschitz continuous gradients, with Lipschitz constant L_{π} .
- V_{π} is strongly convex outside of a ball of radius r with convexity parameter $M_{\pi}>0$, that is,

$$\inf_{\|\mathbf{x}\| \ge r} \nabla^2 V_{\pi} \succcurlyeq M_{\pi} I, \quad \inf_{\|\mathbf{x}\| < r} \nabla^2 V_{\pi} \succcurlyeq -L_{\pi} I.$$

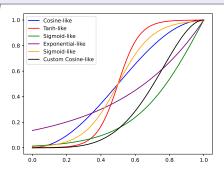
Vacher et al. (2025) obtain alternative bounds on the Lipschitz constant L_t .

Action of $(\mu_t)_t$.

Assumption. (Schedule)

Let $\lambda_t: \mathbb{R}^+ \to [0,1]$ be non-decreasing in t and weakly differentiable, such that there exists a constant C_λ satisfying either of the following conditions

$$\max_{t \in [0,T]} |\partial_t \log \lambda_t| \leq C_\lambda \qquad \text{or} \qquad \max_{t \in [0,T]} \left| \frac{\partial_t \lambda_t}{\sqrt{\lambda_t (1-\lambda_t)}} \right| \leq C_\lambda.$$



Action of $(\mu_t)_t$.

Assumption. (Schedule)

Let $\lambda_t:\mathbb{R}^+ \to [0,1]$ be non-decreasing in t and weakly differentiable, such that there exists a constant C_λ satisfying either of the following conditions

$$\max_{t \in [0,T]} |\partial_t \log \lambda_t| \leq C_\lambda \qquad \text{or} \qquad \max_{t \in [0,T]} \left| \frac{\partial_t \lambda_t}{\sqrt{\lambda_t (1-\lambda_t)}} \right| \leq C_\lambda.$$

Lemma. (Action bound)

If $\pi_{\rm data}$ has bounded second-order moment and λ_t satisfies the assumption above, the action is upper bounded by

$$\mathcal{A}_{\lambda}(\mu) \lesssim C_{\lambda} \left(\mathbb{E}_{\pi_{\text{data}}} \left[\|X\|^2 \right] + d \right) \lesssim M_2 \vee d.$$

Theorem

For any $\varepsilon=\mathcal{O}(\varepsilon_{\text{score}})$, and under smoothness of $(\mu_t)_t$, finite second-order moment of π_{data} and assumption on the schedule, the Gaussian DALMC algorithm initialised at $X_0\sim\hat{\mu}_0$ requires at most

$$\mathcal{O}\left(\frac{d(M_2 \vee d)^2 L_{\mathsf{max}}^2}{\varepsilon^6}\right)$$

steps to approximate π_{data} to within ε^2 KL divergence, that is,

$$\mathsf{KL}(\pi_{\mathsf{data}} \| q_{\theta, \lambda_{\mathcal{T}}}) \leq \varepsilon^2$$
,

assuming a sufficiently accurate score estimator.

We now take the base distribution to be a Student's t-distribution, $\nu \sim t(0, \sigma^2 I, \alpha)$, with tail index $\alpha > 2$

$$\nu(x) \propto \left(1 + \frac{\|x\|^2}{\alpha \sigma^2}\right)^{-(\alpha+d)/2}$$
.

Bad news: The t-distribution is not a stable distribution, unlike the Gaussian family, meaning that the convolution of two t-distributions is not necessarily a t-distribution.

Building blocks for the analysis

• Smoothness of $(\mu_t)_t$.

Assumption

For all $t \in [0, T]$, the scores of the intermediate distributions $\nabla \log \mu_t(x)$ are Lipschitz with finite constant L_t .

• Bound on the action of $(\mu_t)_t$. It arises naturally under some weak assumption on the schedule.

Smoothness of $(\mu_t)_t$.

The following assumptions is simpler and imply smoothness of $(\mu_t)_t$.

Assumption

The data distribution π_{data} has density with respect to the Lebesgue measure.

- $\nabla \log \pi_{\mathsf{data}}$ is Lipschitz continuous with constant L_{π}
- $\|\nabla \log \pi_{\mathsf{data}}\|^2 \leq C_{\pi}$ almost surely.

This assumption holds when the data distribution π_{data} can be expressed as the convolution of a compactly supported measure and a t-distribution.

Action of $(\mu_t)_t$.

Assumption. (Schedule)

Let $\lambda_t: \mathbb{R}^+ \to [0,1]$ be non-decreasing in t and weakly differentiable, such that there exists a constant C_λ satisfying

$$\max_{t \in [0,T]} \left| \frac{\partial_t \lambda_t}{\sqrt{\lambda_t (1 - \lambda_t)}} \right| \leq C_{\lambda}.$$

Lemma. (Action bound)

If $\pi_{\rm data}$ has bounded second-order moment and λ_t satisfies the assumption above, the action is upper bounded by

$$\mathcal{A}_{\lambda}(\mu) \leq rac{\mathcal{C}_{\lambda}\pi}{8} \left(\mathbb{E}_{\pi_{\mathsf{data}}} \left[\|X\|^2
ight] + rac{\sigma^2 dlpha}{lpha - 2}
ight).$$

Theorem

Let $\nu \sim t(0,\sigma^2I,\alpha)$ with $\alpha>2$. For any $\varepsilon=\mathcal{O}(\varepsilon_{\text{score}})$, and under smoothness of $(\mu_t)_t$, finite second-order moment of π_{data} and assumption on the schedule, the heavy-tailed DALMC algorithm initialised at $X_0\sim\hat{\mu}_0$ requires at most

$$\mathcal{O}\left(\frac{d(M_2 \vee d)^2 L_{\mathsf{max}}^2}{\varepsilon^6}\right)$$

steps to approximate π_{data} to within ε^2 KL divergence, that is,

$$\mathsf{KL}(\pi_{\mathsf{data}} \| q_{\theta, \lambda_{\mathcal{T}}}) \leq \varepsilon^2$$
,

assuming a sufficiently accurate score estimator.

Remark: same upper bound for the complexity as in the Gaussian case

Some Final Remarks

Take home messages:

- We have obtained non-asymptotic guarantees in KL divergence for the DALMC algorithm when the base distribution is either Gaussian or Student's t.
- In our paper, we also obtain bounds when replacing the assumption on the smoothness of $(\mu_t)_t$ with a weaker assumption $\mathbb{E}_{\pi_{\text{data}}} \| \nabla V_{\pi}(X) \|^8 \leq K_{\pi}^2$.

Some future directions:

 Developing more efficient numerical schemes, reducing dimensional dependencies in error bounds, and applying this framework to other generative models.

Thank you!

