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Introduction: Generative Models

The goal of generative modelling is to learn the underlying probability dis-
tribution πdata given a set of samples.

In particular, diffusion models achieve this as follows:
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Introduction: Diffusion Models

The forward process in diffusion models is typically an
Ornstein-Uhlenbeck process:

dXt = −Xtdt +
√
2dBt , for 0 ≤ t ≤ T .

where (Bt)t∈[0,T ] is a Brownian motion on Rd and X0 ∼ πdata.

! Disclaimer: The OU process takes ∞ time to interpolate between
πdata and a Gaussian.
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Introduction: Diffusion Models

At generation time, these models evolve samples along a path of
probability distributions (µt)t∈[0,T ]. The intermediate random
variables Xt ∼ µt are defined as

Xt =
√
λtX +

√
1− λtZ ,

for t ∈ [0,T ], where X ∼ πdata, Z ∼ N (0, I ) is independent of X and
a schedule λt = min{1, e−2(T−t)}.

Remark: µt is given by a convolution.

Note: We reverse the notation wrt diffusion models: µT = πdata (ours) vs
µ0 = πdata
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Introduction: Diffusion vs Geometric Path

Motivation: Let πdata = (1 − e−m2/4)N (m, 1) + e−m2/4um, where um is
the smoothed uniform distribution on Im = [−m, 2m] for m = 10 (Chehab
et al. (2024)) and ν = N (0, 1).
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Figure 1: Geometric path
µt(x) = πdata

λt (x)ν1−λt (x)
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Figure 2: Gaussian Diffusion path

µt(x) =
πdata(x/

√
λt )

λt
d/2 ∗ ν(x/

√
1−λt)

(1−λt )d/2
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Introduction: Diffusion vs Geometric Path

What was the previous figure trying to show?

Proposition

If πdata has a finite log-Sobolev constant CLSI(πdata), respectively Poincaré
constant CPI(πdata), the Gaussian diffusion path (µt)t∈[0,T ] satisfies for all
t ∈ [0,T ]

CLSI(µt) ≤ λtCLSI(πdata) + (1− λt)CLSI(ν),

CPI(µt) ≤ λtCPI(πdata) + (1− λt)CPI(ν),

respectively, where CLSI(ν) = CPI(ν) = σ2.

Unlike geometric annealing (Chehab et al. (2024)), the log-Sobolev and
Poincaré constants remain uniformly bounded along the entire path by the
worst constant.
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Introduction: Diffusion Models as Interpolations

Intuition: It all boils down to finding a path of probability distributions
between a simple base distribution ν and πdata.

The interpolation perspective of diffusion models has been investigated
by Albergo et al. (2023).

One-sided stochastic interpolants exactly interpolate between ν and
πdata by using an appropriate schedule λt and introducing control terms
(learned as a neural network).
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Introduction: Our Approach

Practical approach to general linear interpolation paths between a
simple distribution ν and πdata,

Xt =
√
λtX +

√
1− λtZ ,

where X ∼ πdata, Z ∼ ν independent of X and λt ∈ [0, 1], λT = 1.

Explore the behaviour of Langevin dynamics driven by the gradi-
ents of logµt for t ∈ [0,T ], where µt are the intermediate distribu-
tions, i.e., Xt ∼ µt .
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Background: Diffusion Paths

Reverse process in diffusion models = sampling along a path of prob-
ability distributions (µt)t∈[0,T ]

µt(x) =
πdata(x/

√
λt)

λt
d/2

∗
ν
(
x/

√
1− λt

)
(1− λt)d/2

,

where ∗ denotes the convolution operation, ν describes the base or noising
distribution, and λt is an increasing function called schedule, such that,
λt ∈ [0, 1] and λT = 1.

By selecting an appropriate schedule which satisfies λ0 = 0 and λT = 1, the
path of probability distributions (µt)t∈[0,T ] can interpolate exactly between
µ0 = ν and µT = πdata in finite time.
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Annealed Langevin Dynamics for Diffusion Paths

For general diffusion paths, the “reverse process” cannot be described
by a closed form SDE.

Instead of introducing intractable control terms, we focus on annealed
Langevin dynamics to sample from the path.

dXt = ∇ log µ̂t(Xt)dt +
√
2dBt t ∈ [0,T/κ],

where X0 ∼ µ0 = ν, (Bt) is a Brownian motion and µ̂t = µκt , 0 < κ < 1.
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Annealed Langevin Dynamics for Diffusion Paths

Question: How do we simulate

dXt = ∇ log µ̂t(Xt)dt +
√
2dBt t ∈ [0,T/κ]?

Solution: diffusion annealed Langevin Monte Carlo (DALMC) algo-
rithm given by a simple Euler-Maruyama discretisation and the use of
a score approximation function sθ(x , t) (Song and Ermon (2019))

Xl+1 = Xl + hlsθ(Xl , tl) +
√

2hlξl ,

where hl > 0 is the step size, ξk ∼ N (0, I ), l ∈ {1, . . . ,M} and
0 = t0 < · · · < tM = T/κ is a discretisation of the interval [0,T/κ].

12 / 27



Annealed Langevin Dynamics for Diffusion Paths

Bad news :(
Even if

dXt = ∇ log µ̂t(Xt)dt +
√
2dBt t ∈ [0,T/κ]

is simulated exactly, it introduces a bias, that is, Xt ̸∼ µ̂t

BUT ... We quantify this bias non-asymptotically! :)

A key component in determining the effectiveness of the previous dy-
namics will be the action of the curve µ = (µt)t∈[0,T ] interpolating
between the base distribution and πdata, denoted by A(µ).

Question: What is this action exactly?
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Annealed Langevin Dynamics for Diffusion Paths

Question: What is this action exactly?

The action serves as a measure of the cost of transporting ν to πdata
along the given path (Guo et al. (2024)).

The action of a curve of probability measures with finite second-order
moment (+ some regularity conditions) is defined as follows

A(µ) :=

∫ T

0
lim
δ→0

W2(µt+δ, µt)

|δ|
.

Action in action: The KL divergence between the path measure of
the diffusion annealed Langevin dynamics, PDALD = (pt,DALD)t∈[0,T/κ],
and that of a reference SDE such that the marginals at each time have
distribution µ̂t , P = (µ̂t)t∈[0,T/κ], can be bounded in terms of the
action.
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A(µ)ction in Action

Theorem

Let PDALD = (pt,DALD)t∈[0,T/κ] be the path measure of the diffusion an-
nealed Langevin dynamics and P = (µ̂t)t∈[0,T/κ] that of a reference SDE
such that Xt ∼ µ̂t . If p0,DALD = p0,

KL(P∥PDALD) =
κ

4
A(µ).

By the data processing inequality, we have that

KL
(
πdata ||pT/κ,DALD

)
≤ KL (P ||PDALD) ≤

κ

4
A(µ).

Choosing κ = O(ε2/A(µ)), we ensure KL
(
πdata ||pT/κ,DALD

)
≲ ε2.
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Initial Assumptions Before the Deep Dive

A1 (L2 accurate score estimator)

The score approximation function sθ(x , t) satisfies

M−1∑
l=0

hlEµ̂t

[
∥∇ log µ̂l(Xtl )− sθ(Xtl , tl)∥

2
]
≤ ε2score .

where 0 = t0 < t1 < · · · < tM = T/κ is a discretisation of the interval
[0,T/κ].

A2 (Finite second-order moment of πdata)

The data distribution πdata has a finite second-order moment, that is,
M2 = Eπdata

[∥X∥2] < ∞.
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Gaussian Diffusion Paths

Building blocks for the analysis

Smoothness of (µt)t .

Assumption

For all t ∈ [0,T ], the scores of the intermediate distributions ∇ logµt(x)
are Lipschitz with finite constant Lt .

Bound on the action of (µt)t .
It arises naturally under some weak assumption on the schedule.
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Gaussian Diffusion Paths

Smoothness of (µt)t .
Alert: The previous assumption is hard to check in general. The following
assumption implies smoothness of (µt)t .

Assumption: Strong convexity outside of a ball

The data distribution πdata has density πdata ∝ e−Vπ .

Vπ has Lipschitz continuous gradients, with Lipschitz constant Lπ.

Vπ is strongly convex outside of a ball of radius r with convexity parameter
Mπ > 0, that is,

inf
∥x∥≥r

∇2Vπ ≽ MπI , inf
∥x∥<r

∇2Vπ ≽ −LπI .

Vacher et al. (2025) obtain alternative bounds on the Lipschitz constant Lt .
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Gaussian Diffusion Paths

Action of (µt)t .

Assumption. (Schedule)

Let λt : R+ → [0, 1] be non-decreasing in t and weakly differentiable, such that
there exists a constant Cλ satisfying either of the following conditions

max
t∈[0,T ]

|∂t log λt | ≤ Cλ or max
t∈[0,T ]

∣∣∣∣∣ ∂tλt√
λt(1− λt)

∣∣∣∣∣ ≤ Cλ.
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Tanh-like
Sigmoid-like
Exponential-like
Sigmoid-like
Custom Cosine-like
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Gaussian Diffusion Paths

Action of (µt)t .

Assumption. (Schedule)

Let λt : R+ → [0, 1] be non-decreasing in t and weakly differentiable, such that
there exists a constant Cλ satisfying either of the following conditions

max
t∈[0,T ]

|∂t log λt | ≤ Cλ or max
t∈[0,T ]

∣∣∣∣∣ ∂tλt√
λt(1− λt)

∣∣∣∣∣ ≤ Cλ.

Lemma. (Action bound)

If πdata has bounded second-order moment and λt satisfies the assumption above,
the action is upper bounded by

Aλ(µ) ≲ Cλ

(
Eπdata

[
∥X∥2

]
+ d

)
≲ M2 ∨ d .
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Gaussian Diffusion Paths

Theorem

For any ε = O(εscore), and under smoothness of (µt)t , finite second-order
moment of πdata and assumption on the schedule, the Gaussian DALMC
algorithm initialised at X0 ∼ µ̂0 requires at most

O
(
d(M2 ∨ d)2L2max

ε6

)
steps to approximate πdata to within ε2 KL divergence, that is,

KL(πdata ∥qθ,λT
) ≤ ε2,

assuming a sufficiently accurate score estimator.
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Heavy-Tailed Diffusion Paths

We now take the base distribution to be a Student’s t-distribution, ν ∼
t(0, σ2I , α), with tail index α > 2

ν(x) ∝
(
1 +

∥x∥2

ασ2

)−(α+d)/2

.

Bad news: The t-distribution is not a stable distribution, unlike the Gaus-
sian family, meaning that the convolution of two t-distributions is not nec-
essarily a t-distribution.
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Heavy-Tailed Diffusion Paths

Building blocks for the analysis

Smoothness of (µt)t .

Assumption

For all t ∈ [0,T ], the scores of the intermediate distributions ∇ logµt(x)
are Lipschitz with finite constant Lt .

Bound on the action of (µt)t .
It arises naturally under some weak assumption on the schedule.
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Heavy-Tailed Diffusion Paths

Smoothness of (µt)t .
The following assumptions is simpler and imply smoothness of (µt)t .

Assumption

The data distribution πdata has density with respect to the Lebesgue measure.

∇ log πdata is Lipschitz continuous with constant Lπ

∥∇ log πdata ∥2 ≤ Cπ almost surely.

This assumption holds when the data distribution πdata can be expressed as
the convolution of a compactly supported measure and a t-distribution.
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Heavy-Tailed Diffusion Paths

Action of (µt)t .

Assumption. (Schedule)

Let λt : R+ → [0, 1] be non-decreasing in t and weakly differentiable, such that
there exists a constant Cλ satisfying

max
t∈[0,T ]

∣∣∣∣∣ ∂tλt√
λt(1− λt)

∣∣∣∣∣ ≤ Cλ.

Lemma. (Action bound)

If πdata has bounded second-order moment and λt satisfies the assumption above,
the action is upper bounded by

Aλ(µ) ≤
Cλπ

8

(
Eπdata

[
∥X∥2

]
+

σ2dα

α− 2

)
.
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Heavy-Tailed Diffusion Paths

Theorem

Let ν ∼ t(0, σ2I , α) with α > 2. For any ε = O(εscore), and under smooth-
ness of (µt)t , finite second-order moment of πdata and assumption on the
schedule, the heavy-tailed DALMC algorithm initialised at X0 ∼ µ̂0 requires
at most

O
(
d(M2 ∨ d)2L2max

ε6

)
steps to approximate πdata to within ε2 KL divergence, that is,

KL(πdata ∥qθ,λT
) ≤ ε2,

assuming a sufficiently accurate score estimator.

Remark: same upper bound for the complexity as in the Gaussian case
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Some Final Remarks

Take home messages:

We have obtained non-asymptotic guarantees in KL divergence for
the DALMC algorithm when the base distribution is either Gaussian
or Student’s t.

In our paper, we also obtain bounds when replacing the assumption
on the smoothness of (µt)t with a weaker assumption
Eπdata

∥∇Vπ (X )∥8 ≤ K 2
π .

Some future directions:

Developing more efficient numerical schemes, reducing dimensional
dependencies in error bounds, and applying this framework to other
generative models.

Thank you!
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